Electronic-structural dynamics in graphene

نویسندگان

  • Isabella Gierz
  • Andrea Cavalleri
چکیده

We review our recent time- and angle-resolved photoemission spectroscopy experiments, which measure the transient electronic structure of optically driven graphene. For pump photon energies in the near infrared ([Formula: see text]), we have discovered the formation of a population-inverted state near the Dirac point, which may be of interest for the design of THz lasing devices and optical amplifiers. At lower pump photon energies ([Formula: see text]), for which interband absorption is not possible in doped samples, we find evidence for free carrier absorption. In addition, when mid-infrared pulses are made resonant with an infrared-active in-plane phonon of bilayer graphene ([Formula: see text]), a transient enhancement of the electron-phonon coupling constant is observed, providing interesting perspective for experiments that report light-enhanced superconductivity in doped fullerites in which a similar lattice mode was excited. All the studies reviewed here have important implications for applications of graphene in optoelectronic devices and for the dynamical engineering of electronic properties with light.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study

The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...

متن کامل

Twisted and coiled ultralong multilayer graphene ribbons

The mechanical behavior and properties of multilayer graphene sheets and nanoribbons have been a subject of intensive research in recent years, due to their potential in electronic, structural and thermal applications. Calculations of effective properties range from molecular dynamic simulations to use of structural mechanical continuum models. Here, structural and elastic parameters are obtain...

متن کامل

بررسی جذب سطحی در نانوکامپوزیت‌های گرافن/ اکسید‌گرافن- پلیمرهای تقویت ‌شده به‌روش شبیه‌سازی دینامیک مولکولی واکنشی

Abstract: In this work, the amounts of the adsorption of conjugated polymers onto graphene/ graphene oxide were examined by reactive force-field molecular dynamics simulation. The polymers were poly(3-hexylthiophene) (P3HT) and poly(phenothiazine vinylene-polythiophene)(PTZV-PT). The length and width of the graphene sheet were 95.19 Å and 54.16 Å, respectively. The graphene oxide sheets with di...

متن کامل

Quantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate

Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...

متن کامل

Molecular Dynamics Study on the Resonance Properties of a Nano Resonator Based on a Graphene Sheet with Two Types of Vacancy Defects

Due to the excellent electronic, optical, thermal, chemical, and mechanical properties of graphene, it has been applied in microdevices and nanodevices. However, there are some structural defects in graphene limiting its application in micro electromechanical systems (MEMS). These structural defects are inevitable during processing, and it is difficult to assess their effect on the micro/nano d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016